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1. Introduction

The purpose of this report is to review develppments in

objective analysis of meteorological fields. The first part

will review the process known as "optimum interpolation" and

observe that it coincides with schemes developed independently

in other scientific disciplines. The term "optimum" arises

from the fact that the expected mean squared error over some

ensemble of realizations (e.g., over time) is minimized. The

term "interpolation" is misleading since it refers to inferring

values at points other than data points, but not, however,

by a scheme that necessarily reproduces given values at the

data points. Because of this fact, it would probably be

better to call the process "optimum approximation". However,

we follow the meteorological literature and retain the term

"loptimum interpolation".

The second basic thrust of this report is to discuss

Cressman's scheme of successive approximations and show that

a certain variant of the scheme will converge to the same

result given by optimum interpolation. Use of this process

could be advantageous from a computational viewpoint, compared

to optimum interpolation.

In Section 2 we derive the optimum interpolation scheme

4and show the functional form of the approximation. We address

some computational aspects and recent developments in Section

3. In Section 4 Cressman's successive correction scheme is

discussed, including a statistically motivated variant of it.

The final section is devoted to showing that a suitable



variant of a successive corrections scheme will converge to

the same function as given by optimum interpolation.

2. The Functional Form of Optimum Interpolation

The development of optimum interpolation in meteorology

dates back to Gandin [121 and is based on Wiener-Kolmogorov

theory in time series analysis. Various disciplines have used

similar schemes for some time, apparently developed indepen-

dently. We have discovered references to developments in

geology/mining (where it is usually called kriging) [1], [201,

[22], [23], [27], photogramnmetry [19], geodesy [15], statistics

(where it is called stochastic process prediction) [32], and

electrical engineering (where it is sometimes called a Wiener

filter) [8].

We derive the general form of optimum interpolation and

show the form of the interpolation function. While the latter

is known, it is not well known and is even disavowed in print

in one paper [reply to 2]. This situation has probably occurred

-; because the principal interest is to obtain a grid of points

from scattered observations and not to obtain an approximating

surface. However, the form of the equation of the surface is

interesting and revealing.

Let X be the independent variable, and Z(X) be a random

* function whose value is to be estimated from known or measured

values Z(X1 )I Z(X2) Z() at scattered points, , ... ,

-. . We denote the expected value of Z(X), E[Z(X)] by m(X).

This mean value as a function of position is called the trend

2
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surface, and depending on the source of the data, may be

assumed to have a particular form, or to be zero. We will

assume that the trend surface is given by

n

k-0

where the fk(X are known linearly independent functions

(with unknown coefficients, ck). For meteorological applica-

tions, Z represents a residual (deviation from climatology,

say) which is assumed to have zero mean, and thus m(X) a 0.

We include the term for completeness in our development.

A number of assumptions will be made concerning the dis-

tribution of the random function Z(X). We want to estimate

Z(X) by a linear predictor,

N
Z(X) = A.Z(X.)

j=l J -

We assume that the optimum predictor is linear in the observed

values, which is the case if the distribution is Gaussian, but

not necessarily otherwise. In principle the following process

can formally be carried out without assumptions about the

covariance function

(1) C(X,Y) = E[(Z(X) - m(X)) (Z (Y) - m(Y))

In practice, and for computational reasons it is convenient

P to make the assumptions of stationarity and isotropy for the

3



covariance function. The net effect of these assumptions is

that the covariance function C(X,Y) is a function of the distance

-. between X and Y only, not X,Y, or their relative positions

" other than distance between them. These assumptions probably

*do not hold in meteorological applications; for example,

prevailing winds will certainly tend to give a distortion from

isotropy and various landforms will give a distortion from

* stationarity.

We want to estimate the value of Z at X; let us call that

-stimate Z(X). We will do this by minimizing E[(Z(X) -Z(X))2

where

N
Z(X) = I AZ(Xj)

j=l ~-

subject to some conditions which guarantee unbiased estimates.

For example if Z(X) has an unknown constant mean, E(Z(X)) = Co,
N

then the constraint A. = 1 is needed to guarantee the estimate
j=l )

is unbiased. In the general case, the constraints to be im-

posed are

N
(2) 1 A f k(X) f Ox), k O'l...,n.

j=l

Note that this implies we must have n < N and further it can

be deduced that if the data lies on the trend surface, so will

the estimated point (provided the estimate is unique, a standard

14 assumption).
6r
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In meteorological applications it is assumed the measure-

ments ("known" values, Z(Xi)) are subject to errors, hence the

measured values are Z(Xi) + e(Xi). We assume the errors are

Gaussian with mean zero, and are independent of the function

Z (X). We denote the covariance function for the errors by

CE(X,Y). Ultimately we assume the errors are independent,

so that we will have C (X,Xi ) = E 6(X -X) , where 6(0) = 1,

6(X) = 0, X y 0. For the derivation, however, we will allow

the more general covariance function. We note that in the case

of satellite data, for example, the assumption of independence

and zero mean will probably not be satisfied.

2To minimize E[(Z(X) -Z(X)) ] subject to the constraints

(2), we use Lagrange multipliers, 2 Pk' obtaining the objective

function

N 2 nN
(3) EI(Z(X)- j AD(Z(Xj) +C(X))) 2 + : 2 Pk( .Afk(j) fk(X)).

.j =i - - k=0 j=1 -

Before differentiation, we write this as

N(4) E[(Z (X) -m(X))2-2 (Z (X) -r(X)) X (Z MX ) + C(X ) -m(X )
j=l - -

+ N (Z(X. + (X.) -m(X)),
j=l j -J - -

n N -.....

+ 1 2Pk( I Ajfk(Xj) -fk(X)) •

k=0 j=l -

5
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Upon taking partial derivatives with respect to the X and

nk and simplifying somewhat, we obtain

n
(5) X j[C(Xi,X j ) + C (X.,Xj )J + U kfk(Xi ) = C(X,X i )

•..- -- -- k=O

! .. n i = 1,2,... ,N,

and the constraint equations (2).

In matrix form the system of (linear) equations to be

solved is conveniently represented in partitioned form as

(6) (M _,F) ) ()
where

M (C(Xi,X.) + C (Xi,X)) i,j =

F (f (i k = O,...,n i =,...,N

0 is a zero matrix of order (n+l) x (n+l)

A)t
2 N

= 0

SV_ = (C(X,Xi) ... , C(XN)) and

Vf = (f0(X)' ', f (X))
f n

6



Letting G denote the coefficient matrix, we have that

(formally) the solution is

(+) = G

f

Letting d = (Z(Xl) +0(Xl),...,Z( )+e(),0,...,0) represent

the data vector, we obtain

- N( (7) Z (X) = JIAJ(Z (X.) + C (X)

[;:'[~~~ = _d( I=G-1( )itj -'l -J

We will give an alternative interpretation of Z. Note that
,(0C;)

depends on the value of X as well as the data points

,. , while d is independent of X. Since G is symmetric,

so is G- I , and we have

Z(X) = dtG = G-d)t

Now, G-id is the solution of a certain system of equations,

"namely

(8) Ga d_,

where a (A,...AN  bo.. bnt. This represents Z(X) in the

7
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form

(9) Z(X M (d t Gl -- a(!)

SNn
-=+ AbC(XXf xb

+i=l k 0 -f(X

The system of equations (8) can be thought of as arising from

the requirements that an approximation consisting of a linear
combination of the functions C(X,X.) + C (X,X.), i = 1,...,N

...- __-

and fk(X), k = 0,...,n be required to interpolate the data,

Z(Xi ) + e(Xi ), i = 1,...,N, along with constraints analogous

to exactness for the fk(X),

N
IAjf (X)= 0, k =01...,n

j=l

N
Of course the terms I AiC (XX i ) represent interpolation toi=1
the error function and are then dropped to obtain (9). View-

ing things from this perspective, the computation of Z at a

number of different points is simplified, provided the error

estimate given by optimum interpolation is not to be computed.

We address this briefly in the next section.

The point of view afforded by (9) makes it apparent that

- "regionalizing" the process by choosing (from a larger set)

data points near the X of interest must lead to a discontinuous

surface which may, in turn, lead to unne .essary and unwanted

disturbances. Phillips [31] addresses this problem when dis-

-. - cussing combined analysis and initialization (or perhaps,

8
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better to say, analysis which does not require initializa-

tion). See also Williamson and Daley for an iterative approach

to overcoming this problem.

* .In meteorological applications the error covariances are

assumed independent [see, e.g., 7], in which case C C(X,Xi) -

a 2 6(X-X.), where a2  is the variance of the error at X..
C 1 11

In this instance the matrix M differs from the matrix (C(X,X.))

only in that the diagonal terms are augmented. This has a

beneficial effect in terms of the condition number of G and

hence the numerical process of solving (6) or (8).

The equations we have derived are for a single dependent

variable Z(X). In both meteorology and geology simultaneous

treatment of related dependent variables has been derived and

is used. If all dependent variables are measured at each data

point, X1i and if the sum of the expected squared errors for

the dependent estimates is to be minimized, the final result

is formally the same as equation (6). However, each entry in

M, and each of Z(Xi) and Xj must be vectors, and the entries

in the matrix F are replaced by block diagonal matrices. See

Myers [24] for details, where the process is called co-kriging.

In meteorology not all variables are measured at each data

point. The complication this causes is readily resolved,

although it is simpler to group variables instead of points.

It is called multivariate optimum interpolation [7], a confusing

term to those outside the field since the "multivariate"

refers to the dependent variables, not the independent variables.

Of course, cross covariances between the dependent variables

9



are required. See [7] and [21] for the development in

meteorological terms.

As a matter of interest, we observe that the process is

somewhat reminiscent of Lagrange interpolation, with the X.

*' playing the part of the fundamental Lagrange polynomials.

. Thus, solution of (6) for the X. is equivalent to solving for

*the values of the fundamental Lagrange polynomials at the

point X. Alternatively, solving (8) for the A. is equivalentR - J
" to solving for coefficients in the interpolation polynomial

expressed as a linear combination of polynomials.

- 3. Practical Considerations and Recent Results

One of the most important aspects of optimum interpolation

is the appropriate specification of the covariance function,

C(X,Y). In meteorology this has been treated by a number of

authors, [3], [9], [33]. The importance of this has been

recently noted by Franke [11], Hollingsworth [16], and Lorenc

[21] from a practical point of view. In theory, Yakowitz and

Szidarovszky [43] have shown that (in the absence of measure-

ment errors) the approximation converges as the set of data

points becomes dense. Within some limitations this result

holds even if the covariance functions are wrong.

The error estimate for optimum interpolation can be shown

(by substitution) to be

- 2 t t -1 t -ltE[(Z(Y' -Z(X)) 2 ] = C(X,X) - vt(2Q m -Q m Q )V

10
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t -l -l
where Q = I-F(F m F) Ftm-i If E[Z(X)] = 0, then F = 0

and the above reduces to the more familiar form

2 t -1E[(Z(X) - Z(X) ) = C(X,X) - Vm Vc

As noted by Yakowitz and Szidarovsky [43], this estimate is

good only if the covariance functions are correct. They show

*that error estimates with incorrect covariance functions may

be so poor as to not converge to zero as the data points be-

. ~come dense, even though the approximation converges. The

net result of this is that one should not place too much faith

in the error estimates. The covariances assumed are almost

certainly wrong, and the more drastic effect is on the error

estimate rather than the approximation itself.

Computationally the choice between solving (6), then

evaluating Z(X) by (7), or solving (8), then evaluating

Z(X) by (9) depends on two things: (i) If the error estimate

is also to be computed, (6) -(7) is cheaper; (ii) If the

error estimate is not to be computed, then (8) - (9) is cheaper,

except in the instance of only one evaluation of Z(X).

In meteorological applications it is impossible to

sider all data points at once. This leads to some selection

. .process based on the "most important" observations. Often the

closest points are considered the most important. Another scheme

is to retain the points corresponding to the larger terms in the

" covariance matrix (C(XiXj)). Since the importance of a point

depends on the entries in the inverse of the matrix rather

than the matrix itself, this does not seem to be a good scheme.

. .11
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A reasonable choice is probably to use "closest points" in

some norm which accounts for prevailing influences, e.g.,

winds.

Several recent papers of practical and theoretical inter-

est relate optimum interpolation to conventional approximation

theory. Among these are Kimmeldorf and Wahba [17], Matheron

[24], Salkauskas [33], and Wahba [40]. The significance of

the result for meteorological applications is discussed by

Wahba. For errors which have common variance and covariance

functions which have a finite square integral (over the entire

plane), optimum interpolation leads to the function Z(X) given

by (7). This function is also the solution of a variational

problem in the spatial domain, that is: Find Y(X) (in a cer-

tain reproducing kernel Hilbe t space) to minimize

X 2(Z (X) + Y + XJ(Y)j=l - J + J(Y

where X is the ratio of the variance of the errors to the

variance of the random function Z(X) (= C(X,X)), and J(Y)

is the square norm of Y in the Hilbert space. By appropriate

choice of the functional J(Y), new methods can be obtained

which minimize or eliminate contributions from unwanted modes.

4. Cressman's Successive Correction Scheme

Cressman's scheme [101 and variations of it [4] are often

4 used for scattered data in meteorology. We will develop the

scheme as a matrix iterative process, and show that it may not

12
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converge (although as applied, usually does) if the iteration

is continued. In the next section, we will show a relation

between a variant of the Cressman scheme and optimum inter-

polation. We note that Cressman's scheme bears a resemblance

to Shepard's method [35], [13], but its differences are more

important than its similarities. most importantly, the gradi-

ents of the approximating surface are not necessarily zero at

the data points as they are for Shepard's method. In addition,

as originally proposed by Cressman, the function is not smooth,

i.e., does not have continuous partial derivatives.

"*.- Cressman's scheme achieves a weighted average of the data

(a convex combination, in fact) as follows. Let the data again

be denoted by Z(X.), j = I,...,N, and associate a weight func-

tion, W (X), with each point X. This function is ordinarily
J)

a univariate function of distance, jII- XjI. Cressman

proposed using

D2  - 2
2 I]?-Xj1 2 < D

(10) Wj(X) =

20 1 X-X j II > D2

Another scheme [4] is to take

2 2
(11) W (X) = exp(-I IX- Xj II /B

* A first approximation is taken to be

N N
(12) Z(0 )(X) = I Wj(X) Z(Xj)/ j W(X).

j=l 1- j1 j

13



The denominator normalizes the weights and since the Wj X)

are positive, Z( ) (X) is a convex combination of the data.

As such, it satisfies the property. min(Z(X.)) < Z 0() M <
j -1

max(Z(Xj))
j -

Usually, the process is repeated to correct the differ-

ences between the data and the approximation Z(X.) -Z ( 0 ) M),

but using a smaller "radius". This means using a smaller D

in (10), or a smaller B in (11). With superscripts denoting

iterations, we have the following scheme: Let Z ( 0 ) (x)be given

by (12), with W. (X) replaced by Wj (0) (X). Then

N
(13) Z(k) (X) z(k - l ) (X) + I W. ( k ) (X)(Z(Xj)

j=l j --

-(k-) N
Z k - ) (X.)/ w (xk)(X), k = 1,2...

If we look at the sequence of vectors which approximate the

data vector, Z = (ZiXl)...Z()) t we have {(Z (k ) (X

S(k) k = 0,1,... .Denote these vectors by z(k), and

define the matrix

(14) Hik) - i) (Xi)..
N (k) (Xi)i

Then the iteration takes the form

* (15)
z(k) = z (k- 1 ) + H (k)(z-z(k-1)), k = 1,2,...

14



Formally, the latter can be written as

Z (k) = H(k)Z + (I-H(k))z(k -l)

and thus

Z-Z(k) (I H(k)) (ZZ(k-l)),Z = ( -H ( - k = 12, ...

This easily leads to

k

(16) ZZ(k) = (I -H (Z-Z
p=l

and we see that this iteration converges provided that, for

sufficiently large k, the norms of the I-H(k) are bounded by

a constant less than one. This holds for any norm; hence, if

all eigenvalues of the I - H(k) have magnitude bounded by a

constant less than one, for sufficiently large k, convergence

is obtained.

Generally, the effect of decreasing D in (10) or B in (11)

is to increase the relative size of the diagonal elements in

H(k). Since each row sums to one, the matrix will eventually

become diagonally dominant. In any case, if all eigenvalues

are positive (as for (11), for example), the eigenvalues of

I -H are then bounded by a constant less than one, inde-

pendent of k, provided B is a decreasing function of k.

The situation for weights given by (10) is not so pleasant.

* In this case, the matrix H (k) may have negative eigenvalues,

which leads to I -H(k) having eigenvalues greater than one.

P 15
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As D decreases, all eigenvalues do become positive. Whether

or not this happens for values of D used in practice should

be investigated since this has a bearing on the stability of

the iteration.

The effect of decreasing D in (10) or B in (11) is to speed

convergence of the iteration, since this tends to increase the

eigenvalues of H (k). We note in passing that H(k) is a sto-

chastic matrix, and thus has its largest eigenvalue equal to

T
one, with eigenvector (1,...1). In terms of the approxima-

tion, this means convergence in one iteration if Z is a con-

stant vector, i.e., Z = (c,...,c) t , c is a constant. The

maximum/minimum principle cited earlier implies the scheme is

exact for constants however.

In the next section we discuss the general form of the

approximation, and show that under certain simple modifications

the scheme approximates optimum interpolation.

5. Relation of a Variant of Cressman's Scheme to Optimum

Interpolation

The general form of Z (X) in (12) is a rational function

in the weights, W (X), and if the scheme is iterated as in (13),

the form is that of a sum of functions, each rational in the

appropriate set of weights W. k = 0,1,.... If weights

0 were taken to be the functions C(X,X.) +C (X,X.) in (1), for

all k, the resulting approximation bears some relationship to

" optimum interpolation, although it is rational in the covari-

ance functions rather than linear in them. However, if the

denominators of (12) and (13) (and hence, of H(k)) are replaced

0 16



by a suitable constant, the iteration will converge to the

optimum interpolation function.

First we consider the covariance matrix

(17) M = (C(X.iX.) + C (X.,X.)), i'j =1...#N
-1-)-1-

This matrix must be positive semidefinite and we make the

usual assumption that it is definite, i.e., has no zero eigen-

values. Let I MII denote the max row sum norm of M, and let

8 be a constant satisfying 8 > -I IMIlI. Now consider the

iteration obtained by replacing the denominators in (12) and

(13) by B which leads to the matrix iteration analogous to

(15)
;.- 1151

(18)

Z(k) - Z(kl) + 4(Z-z(k - )), k = 1,2,...

This leads to the analogue of (16),

(19) Z- Z(k) = (I k )k(Z- Z(0 ))

Thus, convergence is obtained whenever I- !M has all eigen-

* values strictly bounded by one. Since the eigenvalues of M

must be bounded by I M11 < 2 by our choice of 8, convergence

is obtained. The form of each Z(k) (X) is a linear combination

of the C(X,Xj) + CC(X,Xj). Because convergence implies agree-

ment at the data points, we see that if the error covariances

17



have the form noted before, C (X, X) a 2i6(X- Xi ) the

limiting approximation given by (18) agrees exactly with that

given by (8) - (9), except at the X., where a jump occurs to

yield "interpolation." Of course one thinks in terms of

dropping that term for the final approximation, but must do

so only if an evaluation point coincides with a grid point.

Practically speaking, the reverse situation is where the

special instance is encountered.

The rate of convergence may be slow because of the like-

lihood of M having small eigenvalues, leading to I -IM having

eigenvalues close to one. However, the presence of the error

covariance tends to increase the eigenvalues of M, and in this

respect, large observational errors would benefit the conver-

gence rate. It would seem best to try to choose 0 to minimize

the magnitude of the eigenvalue of I- !M of largest magnitude.

This would maximize the rate of convergence. On the other

hand, most of the significant information may correspond to

*. large eigenvalues of M. (Recall that one is an eigenvalue of

H (k) with eigenvector (1 ,1,..., 1)t.) In this case, it would

make sense to take 8 IIMI which would cause rapid conver-

gence for these modes, while modes corresponding to small

eigenvalues are of high frequency and could be best filtered

out.

The filtering potential of this scheme should be investi-

K£ gated further to determine whether or not the eigenvectors

corresponding to small eigenvalues do indeed lead to unwanted

K noise in the approximation which later must be filtered out.

--- 18



if so, this scheme could be an advantageous one to use.

Some simulations of the scheme have been carried out through

the iteration process. However, the results are nontrivial

to interpret and need additional study, particularly in the

light of the filtering scheme presently used in the opera-

tional model. The combination of including the measurement

errors and the constant normalization factor will result in

the successive correction method appearing more like optimum

interpolation. A multivariate scheme could be derived in

a straightforward fashion.
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